Carbon Nanomaterials Interfacing with Neurons: An In vivo Perspective
نویسندگان
چکیده
Developing new tools that outperform current state of the art technologies for imaging, drug delivery or electrical sensing in neuronal tissues is one of the great challenges in neurosciences. Investigations into the potential use of carbon nanomaterials for such applications started about two decades ago. Since then, numerous in vitro studies have examined interactions between these nanomaterials and neurons, either by evaluating their compatibility, as vectors for drug delivery, or for their potential use in electric activity sensing and manipulation. The results obtained indicate that carbon nanomaterials may be suitable for medical therapies. However, a relatively small number of in vivo studies have been carried out to date. In order to facilitate the transformation of carbon nanomaterial into practical neurobiomedical applications, it is essential to identify and highlight in the existing literature the strengths and weakness that different carbon nanomaterials have displayed when probed in vivo. Unfortunately the current literature is sometimes sparse and confusing. To offer a clearer picture of the in vivo studies on carbon nanomaterials in the central nervous system, we provide a systematic and critical review. Hereby we identify properties and behavior of carbon nanomaterials in vivo inside the neural tissues, and we examine key achievements and potentially problematic toxicological issues.
منابع مشابه
Interfacing neurons with carbon nanotubes: electrical signal transfer and synaptic stimulation in cultured brain circuits.
The unique properties of single-wall carbon nanotubes (SWNTs) and the application of nanotechnology to the nervous system may have a tremendous impact in the future developments of microsystems for neural prosthetics as well as immediate benefits for basic research. Despite increasing interest in neuroscience nanotechnologies, little is known about the electrical interactions between nanomateri...
متن کاملComparison of Buspirone adsorption by modification of carboxylated multi-walled carbon nanotube
To overcome the problems of gene and drug delivery, nanotechnology has gained interest in recent years. Nanosystems with different compositions and biological properties have been extensively investigated for drug and gene delivery applications. Nanotechnology in drug delivery has been manifested into nanoparticles that can have unique properties both in vitro and in vivo, especially in targete...
متن کاملAntifungal and Antibacterial Properties of Graphene-based Nanomaterials: A Mini-review
In recent years, the availability and use of various antibiotics and antimicrobial agents have resulted in increase of drug resistant pathogens. Therefore, scientist’s attention has been diverted to find a suitable replacement for antimicrobial treatment. Graphene (G), as a two-dimensional (2D) carbon-based nanomaterials (CBNs) has a unique physicochemical properties including thermal, optical ...
متن کاملGraphene Interfaced with Biological Cells: Opportunities and Challenges.
By interfacing the quantum mechanical properties of nanomaterials with the complex processes in biology, several bio/nano systems have evolved with applications in biosensors, cellular devices, drug delivery, and biophotoluminescence. One recent breakthrough has been the application of graphene, a two-dimensional (2-D) sheet of sp(2) hybridized carbon atoms arranged in a honeycomb lattice, as a...
متن کاملCarbon-nanotube-interfaced glass fiber scaffold for regeneration of transected sciatic nerve.
Carbon nanotubes (CNTs), with their unique and unprecedented properties, have become very popular for the repair of tissues, particularly for those requiring electrical stimuli. Whilst most reports have demonstrated in vitro neural cell responses of the CNTs, few studies have been performed on the in vivo efficacy of CNT-interfaced biomaterials in the repair and regeneration of neural tissues. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2016